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Abstract

The transformation of a real, continuous variable into an event probability is reviewed
from the Bayesian point of view, after which a Gaussian model is employed to derive an
explicit expression for the probability. In turn, several scalar (one-dimensional) measures
of performance quality, and reliability diagrams are computed. It is shown that if the opti-
mization of scalar measures is of concern, then prior probabilities must be treated carefully,
whereas no special care is required for reliability diagrams. Specifically, since a scalar mea-
sure gauges only one component of performance quality - a multidimensional entity - it is
possible to find the critical value of prior probability that optimizes that scalar measure; this
value of “prior probability” is often not equal to the “true” value as estimated from group
sample sizes. Optimum reliability, however, is obtained when prior probability is equal to
the estimate based on group sample sizes. Exact results are presented for the critical value
of “prior probability” that optimize the Fraction Correct, the True Skill Statistic, and the
Reliability Diagram, but the Critical Success Index and the Heidke Skill Statistic are treated
only graphically. Finally, an example based on surface air pressure data is employed to

illustrate the results in regards to precipitation forecasting.



1 Introduction

Frequently, one is faced with the task of “transforming” a variable (e.g. surface air pressure,
gate-to-gate velocity difference. etc.) into a probability for a corresponding event (e.g.
precipitation, tornado, etc.). A related problem is that of the performance of the forecaster,
i.e. the accuracy of the forecasts or the reliability of the generated probabilities (Murphy
1993, 1996; Murphy, Brown, and Chen 1989; Murphy and Winkler 1987, 1992; Wilks 1995).

Several subtleties arise in both problems. For instance, in forming forecast probabilities,
it is important to consider the correct conditional probability, namely the probability of
an event, given the observation of a variable, and not the converse (Brooks and Doswell
1995; Murphy and Winkler 1987, 1992). The relationship among the various conditional
probabilities is given by Bayes’ theorem (Kendall and Stuart 1969; O’Hagan 1994). Also,
in assessing the performance of the forecaster, not only the correct probabilities must be
assessed, but also it is important to acknowledge the multidimensionality of performance
itself. For instance, it is entirely possible that one forecaster will outperform another, in
terms of a specific measure of performance, but not in terms of another measure. *

The “worse” measures are scalar (one-dimensional) and non-probabilistic, while the
“best” are multi-dimensional and probabilistic, with admixtures also possible. However,
sometimes the particular aspect of performance that is of interest is unambiguously specified
(by funders, for example!), in which case one may concentrate on only the corresponding
scalar measure, and effectively treat performance as a one-dimensional entity. There are also
times when one has no choice but to appeal to a scalar measure; for instance, in deciding
the winner of a forecasting contest, enforcing the multidimensionality of performance may

lead to several winners - one for each dimension of performance. Of course, it is possible

Tn this article, “performance” refers to a measure of forecast quality (Murphy 1993).



that a forecaster outperforms all others in terms of all the components of performance, but
such situations are neither guaranteed nor likely. In this article, although the framework for
forming forecasts is intrinsically probabilistic, primary consideration is given to scalar, non-
probabilistic measures based on a contingency table (Wilks 1995). Reliability diagrams will
also be considered, but a complete treatment of multidimensional and probabilistic measures
will be postponed to a later article.

One non-probabilistic, scalar measure that appears to satisfy most, of the requirements
that one could place on such measures (Marzban and Stumpf 1997) is Heidke’s Skill Statistic
(HSS). A measure that is intimately related (Doswell et al. 1990) to HSS is the True Skill
Statistic (T'SS). Another popular measure in meteorology is the Critical Success Index (CSI)
(Donaldson et al. 1975a,b), with its popularity withstanding its “inequitability” (Gandin
and Murphy 1992) in that its values for random guessing and persistence are unequal; in
fact, technically, CSI is not even a measure of skill since it does not take into account either
of these two factors. Schaefer (1990) also addresses CSI in the rare-event situation. And of
course, there is the most notorious of measures, namely the Fraction Correct (FRC), which
in spite of its numerous inadequacies is still in common use. Its inclusion in the present
study serves only as a point of contrast.

As for probabilistic and multidimensional measures, by virtue of being multidimensional,
they cannot be represented by a single number, and one must appeal to multidimensional
means, e.g. 2-dimensional diagrams, to represent such quantities. One example is the
reliability diagram (Wilks 1995) which is the one that will be discussed here as an example
of a probabilistic, multidimensional measure. Multi-category reliability diagrams have also
been considered (Hamill 1997).

We begin with a review of the Bayesian approach of transforming a real, continuous



variable into the posterior probability of an event, given an observation. Then, a Gaussian
model is employed to allow for an explicit computation of the probabilities and several

measures of accuracy. 2

It is shown that by virtue of being scalar measures and also
depending on prior probability, it is possible to “free” the prior probabilities from their
“true” values, as estimated from the group sample sizes, and instead set them to critical
values that maximize a given measure. These critical values of “prior probability” will
be computed for the above-mentioned scalar measures. Exact results are found for FRC,

TSS, and reliability diagrams, but CSI and HSS lend themselves mostly to an approximate

(graphic) treatment.

2 Probabilities and Bayes’ Theorem

In a probabilistic approach to forecasting, conditional probabilities play an important role
(Brooks and Doswell 1995; Murphy and Winkler 1987), and so, the conditions under which
one obtains the probability of a given event must be carefully specified. For instance, consider
the situation where there are only two possible hypotheses (e.g., tornado and nontornado,
or rain and no-rain, etc.), generically labeled as “1” and “0” for the existence of event
and no-event, respectively. Then, the probability of making an observation of a quantity x
(e.g., wind-speed, temperature, etc.), given the hypothesis, is a completely different quantity
than the probability of a hypothesis being in effect when = is measured. The former is
sometimes called likelihood, and the latter is the posterior probability of an event, given
the measurement z; the two probabilities are related through Bayes’ theorem (Kendal and

Stuart 1969; O’Hagan 1994). It is this posterior probability which is of interest when a

2Given the ubiquity of Gaussian distributions in meteorological data, these findings are valid in a wide

range of applications. A Gaussian model has also been considered by Mason (1982).



forecast is made, since z is measured first and one is then interested in the probability of
the hypothesis that gave rise to that value of x.
In the 2-group case, generally labeled “0” and “1” - Bayes’ theorem states that

_ p1Li(z)
Ple)= poLo(z) + p1Li(x)’

where pg, p1 are the prior probabilities for the two groups, and Ly (z), L () are the likelihood

(1)

functions, while P;(x) is the posterior probability that the hypothesis “1” was in effect when
x is measured. Of course, py +p1 =1 and Py+ P, = 1.

How does one compute these probabilities from data on x? First, one simply plots two
histograms (i.e. a frequency plot) - one for the x values corresponding to the nonevents
(0s), and another for the events (1s). These frequencies can be labeled as Ny(x), and N;(z),

respectively. The likelihoods are then defined as

where N; (i = 0, 1) are the respective sample sizes. Clearly, the sum of all the observations in
each histogram is equal to the total number of non-events (), and events (/V; ), respectively,
in the sample. Consequently, the sum of the observations under the Ly(x), and L;(z) plots
is equal to 1:

/L,-(x)dx =1, (i=0,1).
In other words, the likelihoods are simply normalized histograms. As for the prior probabil-

ities, their estimates are given by the sample sizes as

where N = Ny + N;. The posterior probabilities are then computed from equation (1).
This completes the transformation of an observation, x, into a posterior probability of a

corresponding event.



As will be shown, the value of p; = N;/N does not necessarily imply optimum perfor-
mance when performance is gauged in terms of scalar, categorical measures. One aim of
this article is to derive the critical values of “prior probability”, pi., that optimize a given

measure.

3 A Gaussian Model

There are many reasons (Wilks 1995) for assuming a parametric form for the Likelihoods,
L;(z), and proceed to estimate the parameters from the sample data. A most common ansatz
is that of normality, i.e., that the single variable z is distributed in a Normal, or Gaussian,
fashion:

1 _@on?

Li(z) = Voo, exp i, (2)

where p; and o; are the mean and the standard deviation for the variable z, in group i
(1 = 0,1), all estimated from the sample data. Figures la and 1b show some generic,
gaussian likelihood functions for two groups.

As stated in the Introduction, sometimes one is interested in non-probabilistic measures
such as CSI, T'SS, or HSS, which are meaningful only for categorical forecasts. Probabilistic
forecasts can always be reduced to categorical ones by the introduction of one (or more)
thresholds. For example, in regards to Figure 1a, a value of x can be assigned to (or forecast
as) the group with the higher likelihood. Then, the value of x at which the two curves
intersect would be the natural threshold marking the boundary between the two groups.
However, as discussed in the Introduction, this is the “wrong” probability to consider. A
measurement x must be classified into the group with the higher posterior probability. Figure
1 is still instructive in that it allows for the interpretation of prior probability as a “gener-

alized” threshold. As will be shown below, the qualifier “generalized” serves two functions:



in the special case where the two groups have equal standard deviations, prior probability
simply shifts the threshold away from the one at the crossing-point of the two curves in
Figure 1a to the crossing point of the curves poLo(x) and p; Li(x). The other sense in which
prior probabilities represent generalized thresholds arises in the more general case where the
group standard deviations are unequal; in that case, poLo(x) and piL,(z) cross not at one
threshold but at two thresholds, marking the boundaries between the two groups. It is then
said that the decision boundary is nonlinear. The effect follows simply from the relevant
equations and will be shown below.

In obtaining measures of performance for categorical forecasts, as mentioned previously,
the decision criterion must be based on P;(z)/Py(x), or equivalently log(Pi(z)/Fo(z)). In a

gaussian model, it follows from (1) and (2) that
Lo
log(P1(2)/ Po(z)) = 5 D"(2),

where the so-called discriminant function, D?(z), is given by

11 fo po i a0 1—py
D*(z) = (= — =)2° —2(5 — 55)r + (5 — =) + 2log(—) — 21 . (3
(@)= (5 = )" =205 = D)ot (0 = )+ 210g(77) — 2log(—F). (3)

Recall that the means and the standard deviations are estimated from the sample data, and
then an observation, z (either from the same data or an independent data), is assigned to
group 1 if D%(z) > 0 (i.e., Pi(z) > Py(x)), otherwise it is classified (forecast) as a 0 (i.e.,
Py(z) > Pi(z)). ® Also note that this larger-posterior-probability rule implies the unique
threshold of 0.5 for posterior probability, because Py(x)+ Pi(x) = 1. In other words, as far as
posterior probability is concerned it makes no sense to consider a threshold other than 50%.
Therefore, the root(s) of Equation (3) are the threshold(s), and they depend on p;. (Recall

that these roots correspond to the values of z where the quantities poLo(x) and p;L;(z)

3An z that yields D?(z) = 0 can always be assigned to one of the groups on a random basis.
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intersect.) It is clear that any scalar measure of performance, through its dependence on
these root(s), also depends on the prior probability p;. One can then find the critical value
of p; that optimizes a given measure.

There are two cases that must be treated separately - the “linear” case, if g = o, and
the “quadratic” case where oy # ;. The reason for these names will become clear, next.

Linear Discriminant Function

In the fortunate situation where oy = 01 = o, (i.e., if the data is so-called homoelastic)
then the discriminant function becomes linear? in z, and there is, then, only the one root
(threshold)
P+ o o (1—271)‘ (@)

+ lo
2 ) H1 — Mo 8 y4i

tlinear = (

As mentioned previously, the number of crossing points (1 or 2; excluding the ones at +oo
and —oo) is determined by the relative size of oy and oy (i.e. equal or not) and not by pg or
p1. Therefore, in the linear case there is only one threshold regardless of the value of prior
probability.

Henceforth, and without loss of generality, we will assume py > po. This can be done
simply by labeling the two groups appropriately. Then x > ;¢4 implies that x belongs to
group 1, and x < %j,eqr implies that z belongs to group 0. It is then possible to calculate the
False Alarm Rate and the Miss Rate, in terms of which the various measures can be written
(next section). The former is simply the rate at which Os are classified as 1s, and the latter
is the rate of misclassifying 1s as 0s, i.e.,

o0

Uinear
Co1 = Ly(z)dz, and ¢ :/l Ly(z)dx.

tiinear

4This has great utility in the multivariate case, because then the coefficients of the various z-terms would

represent the predictive strength of the respective independent variables.



Substitution of the gaussian expressions for L;(z) yields,

Cop = %(1 —erf(ty)), and cyp= %(1 +erf(t)), (5)

where er f(z) is the gaussian error function, and ¢;, (: = 0, 1) are defined as

S+
If

V2 V2

where the 4+, — signs are for 7 = 0, 1, respectively, and we have defined the useful quantity

Linear — i 1 4 1 1
“tinear — M — 4+ -log(— — 1
(15 + 3w 1), ®

M1 — Ho
0= —
o, ™)

to be determined from sample data. The number of false alarms and misses is obtained
by multiplication of the rates by the respective group sample sizes: number of false alarms
= Ny ¢o1, and number of misses = Nj c¢qg.

Quadratic Discriminant Function

If, as is too-often the case, oy # o1, then equation (3) in general has two roots, i.e., two

thresholds. Writing the discriminant function as

D(z) = (Ui3 - U%)(x Y —t),

with the roots written as t*, then the false alarm rate and the miss rate are given by

= [ Lofa) du = slerf () — erf (1))
co = [ @) et [T L) de =1 Lferf7) - erf 7)), ®)

if 02 > o?. By exchanging 0 <> 1 in these equations, one obtains the respective rates, if

0?2 > 2. The t, (i = 0,1) are defined as




Thus far, we have not written the expression for the roots t*, simply because the relevant

quantities in (8) depend on ¢F and ¢, and they can be found to be

) 802 1 2
+ _ 0,1 2+ 0
where
=" i=0,1) (10)

o
In equation (9) the upper signs + apply when d; > d;, and the lower signs F apply when
01 > dg.
The two roots are Real (non-imaginary) if only if the expression under the square-root

is non-negative, which translates into a constraint on p;:
If 6 > 07, then p; < p., otherwise p; > p,

where p,. is defined as

252 1
51 58 512
Pee = | 1+ — exp®@17%) : (11)
do

In other words, there is a range of values for p; where there is no (real) threshold at all. For
such values of p;, there does not exist a discriminant function. It is easy to understand this
phenomenon: recall that the two roots correspond to the two crossing points of pgLo(z) and
p1L1(z), but there exists some value of p; for which one of the two quantities lies entirely
below the other, and so there are no crossing points. In such a case, all observations of = are
then persistently classified as belonging to the group with the higher p;L;(x). Note that in
the linear case when o1 = 0p, none of the groups can have a p;L;(z) that lies entirely below
the other, and so p.. is specific to the quadratic case.

The above results are relevant mostly for scalar measures of categorical forecasts, and

the critical values of p; that optimize the measures will be presented in Section 5. At the
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other extreme, if forecasts are probabilistic, and one has the full luxury of dealing with mul-
tidimensional, probabilistic measures, then a different approach must be adopted. Section 5
also presents the critical value of p; that yields the most reliable plot in a reliability diagram

(in complete generality, i.e. without reference to a Gaussian model).

4 Measures

In a Bayesian approach to forecasting, the dependence of posterior probabilities on prior
probabilities is transmitted to the performance measures - both the scalar and multidimen-
sional measures, although in the latter case there is no reason to set the prior probabilities
to a value different from that estimated from the group sample sizes. The dependence of
the false alarm rate and the miss rate on p; is now explicit in eqs (5), (6), and (8), (9). We
must now write the measures in terms of these rates. The four scalar measures FRC, CSI,
TSS, and HSS can be defined in terms of the contingency table (otherwise known as the

Confusion Matrix, or in short the C-matrix),

. a b
C-matrix = ( e d ) ,

where a and d are the number of correct forecasts of nonevents and events, respectively; b
and c are the number of false alarms and misses, respectively, and are therefore given by
b = cp1 Ny and ¢ = ¢;9N;. Note that Ny = a + b and N; = ¢ + d. These four measures can

be manipulated to depend on ¢y, c19 and the ratio of the two group sample sizes only:

i Fraction Correct
a+d _1—601 1—010
= N Ny °
No+MN 1+ 143

FRC =

i Critical Success Index
d . 1-— C1o
b —+ Nl 1+ %601 ’

1

CSI =

12



i True Skill Statistic
ad — be
NoN;

TSS =

=1-co1 —cio,

i Heidke’s Skill Statistic

2(ad — be) . 2(1 — co1 — ¢10)
No(b+ d) +N1(0,+ C) N 24+ (%—(1) — 1)601 — (1 — ]]:]]_(1))010 ‘

HSS =

A reliability diagram is simply a graph of the observed ratio of event sample size to the total
sample size, at a given value of forecast probability:

i Reliability diagram

Ny
— P
N P VS 1

where |p, means “at a given value of P;”. This quantity will be derived in the next section.

Note that if Ny = Ny, then HSS=TSS and FRC=(1+TSS)/2. It is interesting that TSS
has no dependence (explicit or implicit) on the sample sizes, and consequently it is well-
defined in the rare-event limit; see the Discussion section. As for the reliability diagram, a
most reliable forecaster will produce a straight, diagonal line on that diagram, and points
below (above) the diagonal line reflect over- (under-) forecasting. Recalling eqs (5) and (8) for
Co1, C10, the dependence of the scalar measures on prior probability becomes explicit. Figures
2a-d show four measures as a function of py, in the linear case, for several examples of Ny/N;
and 0. Note that when Ny = N; (Figures 2a,b) all four measures peak around p; = 1/2.
The differences between the measures appear in full force, however, when Ny # N; (Figures
2¢,d); whereas TSS continues to peak at p; = 1/2, FRC appears to peak at p; = N;/N,
and CSI and HSS have other critical values. All of these values will be derived in the next

section.
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The significance of setting the prior probability at its optimal value can be seen in Figure
2¢, for instance. Hastily setting p; at 0.5, would result in an HSS of 18%, while p; = N;/N
would yield HSS=6%. However, HSS at its critical value is 25%. The improvement in HSS
is even more significant for smaller values of ¢ (Figure 2c is for § = 1).

As will be shown below, it is important to point out that the critical value of p; that
yields optimal results in a reliability diagram is exactly the “true” value as estimated from
the group sample sizes, i.e. p; = N;/N. Values of p; that are different from this true value
appear to exist only for scalar, categorical measures.

For the quadratic case, the p;-dependence of the four measures, for several different
values of Ny/Ny,dg, 61 is illustrated in Figures 2e,f. These Figures show the effect of p,. -
the value of p; beyond which the roots of the discriminant function become imaginary (see
equation (11)). As can be seen, the behavior of the curves is different depending on whether
dg > 01 or §; > dp; in the former (Figure 2e) the curves behave similar to the linear case
(Figure 2d), except that there is a forbidden region above p.. However, if §; > ¢y (Figure
2f), then not only there is a forbidden region, but also the “true” value of p; = N;/N falls in
this forbidden region. In other words, it is possible that this natural choice of p; will in fact
yield a classifier that has no skill at all, when performance is gauged with these measures.
Also note that FRC reaches its maximum at p...

Having obtained and illustrated the p;-dependence of the measures, the task at hand
becomes to differentiate these measures with respect to p; and find the roots of the result-
ing expressions. These critical values, pi., are the values at which the various measures
are maximized. For the reliability diagram, this will not be necessary, for the value of p;

corresponding to maximum reliability is given exactly by the “true” value (next section).
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5 Some Exact Results

Given the nonlinear nature of the equations, analytic expressions for p;. are difficult to derive.
However, for FRC, TSS, and the reliability diagram exact results are possible. In FRC and
TSS, the appearance of cg1, ¢19 in the numerator alone makes the calculation possible if one
notes the identity

2 2

d
%erf(t) = ﬁ exp = ,

which follows from the definition of the gaussian error function

erf(t)

exp ”

-k
The details of the calculation will not be presented here, but we find, in both the linear

and the quadratic case,

N
For FRC: p;. = Wl’ if 99 > 6y (12)
1
For TSS:  pi.= 3 - (13)
Similarly, for the reliability diagram
M

For reliability diagram: p;, = (14)

N

These values of p;. will maximize the respective measures. Equations (12)-(14) are interesting
in that they reproduce the two popular critical values - the one suggested by Bayes’ Postulate
(Kendall and Stuart 1969), i.e. 1/2, and the “true” value, i.e., N;/N. So, TSS appears to
have an affinity for p; = 1/2, while FRC and the reliability diagram have an affinity for
Ni/N.

It is worthwhile to outline the derivation of p;. for the reliability diagram found in

equation (14), because it is true in general, i.e. not for Gaussian distributions only. Recall
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from equation (1) that P,(z) can be written as

1

= N1\ No(z
L+ () e

Pl(.T)

?

because L;(x) = N;(x)/N;, where N;(z) is the sample size of the i* class, at a given value
of x. Meanwhile, the observed ratio of event sample size to the total sample size, also at a

given value of z, is
Ni(z) Ni(z) 1

N@) ~ No(a) + Naf@) — 1+ R

Both expressions have an x-dependence only through the ratio Ny(z)/Ni(x), and therefore,

eliminating this ratio from both equations yields the P;-dependence of Ni/(Ny + Np), i.e. a

reliability diagram:
N1| _ aP;(z)
N 14+ (@-1DP(z) ’

(15)

where a = (poN1)/(p1No). Figure 3 shows the resulting reliability diagram for several values
of a. Equation 15 implies that a = 1 yields maximum reliability; this value of a corresponds
to p1c = N1/N. Note that this is also the value at which FRC - not the best of measures -
is maximized.

The existence of ¢g1, ¢1g in the denominators of CSI and HSS renders the critical equations
nonlinear, and as a result only limiting and numerical solutions for p;. are possible. As
examples of the former, it is possible to show that for Ny >> N;, CSI and HSS have
the same p;., although that value itself can be found only numerically. The same holds if
00,01 >> 1. And if Ny << Ny, then the p;. of CSI is equal to that of FRC, namely N;/N.
Also, for HSS, p;. — N;/N, as § — oo; given that this value of p; is the “true” value
optimizing a reliability diagram, then it is evident that a forecaster with an optimum HSS

is apt to have a sub-optimum reliability plot unless the data set happens to have “large” ¢

or N()/Nl.

16



6 Numerical Results

For the sake of brevity, in this article only HSS is considered, although the CSI results are
available as well. It is important to note that all of the scalar measures are written in terms
of only Ny/Ny, and &g, §1. As a result, the p;. for HSS and the corresponding HSS itself (i.e.,
HSS(p1.)) can be tabulated in terms of these quantities. Again, recall that these quantities
are obtained directly from the sample data.

For the linear case, dg = §; = §, and so the p;. are determined from only two quantities -
No/Ny and 0. Figures 4a, b allow one to read-off p;. and HSS(py.), respectively, given ¢ and
No/Ni. For values of § and Ny/N; not given in Figure 4, observe that the plots in Figure 4a
asymptotically approach Ni/N for large §, and large Ny/N;, as was shown in the previous
section. Then, one may also find HSS(p;.) for large values of § and Ny/N;, from Figure 4b.

For the quadratic case, the critical values of p; can be read-off from Figures ba-f, given
No /Ny, 0o, 01- It is sufficient to present only No/N; = 2,4,8,100, 500, 1000, and 0 < §g, 57 < 7
results, since the results for other values can be found by extrapolation. As in the linear
case, p1c — Ni/N for large g or d;. The Ny/N; = 1 case is not considered numerically, since
in that case HSS=TSS, and from equation (13) we find p;. = 1/2 for HSS, exactly.

Similarly, HSS(pi.) (i-e., the maximum value of HSS) can be read off from Figures 6a-f.
Again, for Ny/N; = 1, HSS(p1. = 1/2) is not presented, since it can be calculated exactly
from egs (8) through (10). Hence, Figures 5 and 6 allow one to obtain the critical value of p;
and the corresponding HSS, given Ny/Ni, &, and d;, all obtained from the sample data. It
is evident from the defining equations of the measures in section 3, that whereas CSI is not
symmetric under the exchange 0 <> 1, FRC, TSS, and HSS are. Indeed, it is this symmetry
that has justified the presentation of the results for only Ny/N; > 1, since the results for

Ny/N; < 1 can be obtained by the exchange 0 <+ 1 everywhere.
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7 Example

In order to illustrate the above methodology, an example will be considered in this section.
The example is carefully selected in order to point out some of the subtleties.

The hourly surface air pressures from Syracuse, New York, for the year 1990, were
considered. Each hourly observation was also accompanied by whether or not some form of
precipitation - rain, various types of snow, hail, etc. - was observed. The above methodology
can be applied to deduce the optimal value of prior probability for precipitation when surface
air pressure is employed to forecast precipitation; performance is gauged in terms of Heidke’s
Skill Statistic or via a reliability diagram.

The number of precipitation and no-precipitation observations was 1,776 and 6,145,
respectively; the mean pressures were 998.48 (mb) and 1002.86 (mb), and the corresponding
standard deviations were 8.673 (mb) and 7.738 (mb). This is all that will be required. The
actual frequency distributions and the corresponding gaussian fits are shown in Figure 7.

First, recall the condition u; > po imposed at the outset of the analysis (section 2),

implies that the group with the large mean must be labeled as group 1. Therefore, we have

No = 1776, jpo=998.48, oy =8.673,

Ny = 6145, p; =1002.86, o= "7.738.

Then,
No/Ny =0.289, 09 = 0.505, 4; = 0.566,
with dg, and d; found from equation 10.
If we are willing to overlook the difference between oy and o;, then we may work in the
linear scheme with § = (do+91)/2 = 0.536. Given 6 and Ny/Ny, Figure 4a is to be consulted

to obtain the desired quantity, however, the Ny/N; = 0.289 results do not appear in that
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Figure. At this point, we simply recall the symmetry of the results under the exchange of
the labels 0 and 1. Then, we simply look-up the Ny/N; — N;/Ny = 1/0.289 ~ 3.5 results.
Figure 4a suggests a value of p;. = 0.45, but this is really the value of py. since we relabeled
the groups. As a result, p;. = 1 — po. = 0.55. Similarly, Figure 4b suggests a corresponding
value of HSS~ 15%.

The single root of the linear discriminant function is 997.60(mb), computed from equation
(4). This means that in this linear approximation pressures below this value are more
likely to be associated with precipitation, while those above are more likely to represent no
precipitation.

On the other hand, if one assures that oy and o, are statistically distinct (more on this,
below), then the quadratic method must be employed. According to Figures 5a and 5b,
since No/N; = 3.5 lies in between Ny/N; = 2 and 4, then p;. lies in between 0.45 and
0.43. So, we may choose p;. = 0.44, but again, this is really py. because of the relabeling.
Therefore, p;. = 1 — po. = 0.56. Similarly, HSS itself can be read-off from Figures 6a and 6b
as HSS~ 20%.

This example was chosen for having a 0y and o, that are relatively comparable in magni-
tude, in order to allow for the illustration of both the linear and quadratic methods. However,
if the object is more than an illustration, then it behooves one to question whether or not
the difference between oy and o, is statistically significant. This can be done by computing
the confidence intervals on oy and 0,. Without going into the details, suffice it to say that
in this example, although the means o and p; are statistically distinct at the 99% level,
oo and oy are statistically equivalent (at the 99% level), and so the linear method is quite
adequate. See the Discussion section for an interesting consequence that would have ensued

if o9 and oy had turned out to be statistically distinct.
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As for the reliability diagram, the exact results of the previous section indicate that the
most reliable plot is obtained when p; takes the “true” value N;/N, i.e. p;. = 0.78. Then
the reliability plot is a diagonal line. Note that this value of p; is different from the value

that optimizes HSS in either the linear or the quadratic regime.

8 Discussion

In addition to allowing for improved (scalar) performance, there is one other reason for
considering a value of p; that is different from N;/N, and that arises if the single variable
x is the output of some sort of a regression analysis. It is entirely possible that the group
sample sizes in the training data may not be proportional to the climatological one. In such
a situation, it is unclear which p; should be selected - the p; of the training data or that of
the test data.

It is interesting that TSS does not depend on group sample sizes (section 3). This may
seem contrary to what has previously been said about TSS in the rare-event limit: On one
hand, if Ny >> N;, then any reasonable classifier will yield a C-matrix with a >> b, ¢, d,

from which it follows that (Doswell et al. 1990)

ad — bc d— % d
i TSS = 1i EEE———— | a = =1 .
a>Shed a>>hed (a+b)(c+d)  asbed (1+L)(c+d) ctd 1o

The right-most term in this equation is the so-called Probability of Detection which by
itself constitutes an improper measure since one can optimize it by persistently forecasting
all observations as “1”s. On the other hand the independence of TSS from Ny, Ni, would
imply that TSS is given by 1 — ¢g; — ¢1¢ regardless of whether or not events are rare. This
may appear to be paradoxical. The “catch” is embedded in the expressions b = ¢q; Ny and

¢ = ¢19N7, with 1, ¢19 given by the N-independent eqs (4)-(7), which together imply that
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TSS is independent of Ny and N;. But this is true if only if there exist unique false alarm and
miss rates (co; and c¢1g) that are independent of the sample sizes. In other words, assuming
that there exists unique, N-independent false alarm and miss rates, then TSS is in fact a
well-defined measure even in the rare-event limit. T'SS is still a pathological measure even in
the case where there exist unique false alarm and miss rates, in that if the former is unusually
small (i.e., cg1 << 1), then TSS=1 — ¢y¢; this time, however, the problem is peculiar to the
classifier, and not any rare-event conditions present in the data.

In the example, above, it was mentioned that oy and oy are statistically equivalent
with 99% confidence, and it was concluded that for all practical purposes the linear method
would be adequate. There is an interesting effect that would have occurred if oy and o
were statistically distinct: That would have implied that there would be two crossing points
between pgLo(x) and p;Li(z). Indeed, the two roots can be found to be 996.5(mb) and
1043.5(mb). This, in turn, would have implied that pressures below 996.5(mb) are more
likely to be associated with precipitation, and those above 996.5(mb) are more likely to be
associated with no precipitation. This is as in the linear scheme and is physically acceptable;
however, the existence of the second root would have implied that pressures above 1043.5(mb)
are more likely to be associated with precipitation! Although, in this case, the statistical
equivalence of oy and o; precludes such nonlinear behavior in pressure, it is important to
emphasize the “ease” with which such effects may occur; all that is required is that the two
groups be normally distributed and have statistically distinct standard deviations! In such
a case, the “wider” distribution is guaranteed to cross the “narrower” one twice, thereby

giving rise to such nonlinear effects.
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9 Summary

In this article, the Bayesian approach to the transformation of a single continuous variable
to a posterior probability of a corresponding event is outlined. The issue of forecast quality
is then addressed in terms of four scalar performance measures for categorical (reduced)
forecasts, and reliability diagrams. It is shown that these measures may be optimized by
setting the event prior probability at certain critical values as given by p;., where p;. = N;/N
(i.e. the “true” value) for Fraction Correct and reliability diagrams, and p;. = 1/2 for the
True Skill Statistic. The Critical Success Index and Heidke’s Skill Statistic do not allow for
exact results, and so their values of p;. are presented graphically. The use of the graphs
requires only a knowledge of the means, the standard deviations and the sample-size-ratio

of the two groups.
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Figure Captions

Figure 1. Gaussian likelihood functions for two groups with means at 4 = 30 and p = 50,
and a) with equal variances and b) with unequal variances. In the former, the two curves

cross at only one point, but in the latter they cross at two points.

Figure 2. The p;-dependence of four measures for some examples: a) No/N; = 1,0 =1, b)
No/N1 =1, =2, ¢) Ng/N; = 10,6 = 1, and d) Ny/N; = 10,6 = 2, in the linear case, and
e) No/N; = 100,60 = 5,07 = 1, f) Ny/N; = 100,69 = 1,; = 5, in the quadratic case. The

vertical lines in each graph mark the “true” value of p;, i.e. p; = N;/N.

— PoM

Figure 3. The reliability diagram for several values of a DiNG"

Optimum reliability corre-

sponds to a = 1, which translates to p; = N;/N.

Figure 4. a) The values of pi., and b) the corresponding HSS, HSS(p1.), in the linear case,

as a function of § and for 10 values of Ny/N; = 1,2,4,8,16,32, ..., 2'° = 1024.

Figure 5. The values of p., in the quadratic case, as a function of §g and §; = 0.1,0.5,1.0,1.5,2.0, ..., 7.0,
for No/N; = 2,4, 8,100,500, 1000. (For No/N; = 1, p1, = 1/2.)

Figure 6. The values of HSS(py.), in the quadratic case, as a function of §; and 6; =
0.1,0.5,1.0,1.5,2.0, ..., 7.0, for No/N; = 2, 4,8, 100, 500, 1000. (For No/N; = 1, HSS is found
from egs (8)-(10) with p;. = 1/2.)

Figure 7. The distributions of hourly surface air pressures for Syracuse, NY, for the year
1990. The rough curves represent the data and the smooth curves are gaussian fits to the
data. The “larger” curve is for hours when some form of precipitation occurred, and the

“smaller” curve is for when there was no precipitation.
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